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Abstract
We develop a functional renormalization group approach which describes the low-energy
single-particle properties of the Anderson impurity model up to intermediate on-site
interactions U � 15�, where � is the hybridization in the wide-band limit. Our method is
based on a generalization of a method proposed by Schütz et al (2005 Phys. Rev. B 72 035107),
using two independent Hubbard–Stratonovich fields associated with transverse and longitudinal
spin fluctuations. Although we do not reproduce the exponentially small Kondo scale in the
limit U → ∞, the spin fluctuations included in our approach remove the unphysical Stoner
instability predicted by mean field theory for U > π�. We discuss different decoupling
schemes and show that a decoupling which manifestly respects the spin-rotational invariance of
the problem gives rise to the lowest quasiparticle weight. To obtain a closed flow equation for
the fermionic self-energy we also propose a new scheme of truncation of the functional
renormalization group flow equations using Dyson–Schwinger equations to express bosonic
vertex functions in terms of fermionic ones.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Anderson impurity model (AIM) is one of the most
important model systems in condensed matter physics [1]. The
model was originally proposed by Anderson [2] to describe
the properties of local moments in metals. Its Hamiltonian
describes a single correlated impurity which is coupled to a
band of non-interacting conduction electrons,

Ĥ =
∑

kσ

(εk − σh)ĉ†
kσ ĉkσ

+
∑

σ

(Ed − σh)d̂†
σ d̂σ + Ud̂†

↑d̂↑d̂†
↓d̂↓

+
∑

kσ

(V ∗
k d̂†

σ ĉkσ + Vkĉ†
kσ d̂σ ). (1.1)

Here, ĉkσ annihilates a non-interacting conduction electron
with momentum k, energy dispersion εk and spin projection
σ , while the operator d̂σ annihilates a localized correlated
d electron with atomic energy Ed and on-site repulsion U .
The hybridization between the d electrons and the conduction

electrons is characterized by the hybridization energy Vk. We
have also included in equation (1.1) the Zeeman energy h
associated with an external magnetic field.

The thermodynamic and spectral properties of the AIM
can be calculated accurately by means of Wilson’s numerical
renormalization group [3–5] (NRG); see [6] for a recent review.
However, the calculation of the spectral function A(ω) of the
d electrons by means of the NRG requires some computational
effort, in particular if one needs accurate results for arbitrary
frequencies ω. Since the quantitative knowledge of the spectral
function of the AIM for all ω is essential in the context of the
dynamical mean field theory describing strong correlations in
realistic three-dimensional fermion systems [7], it is important
to develop approximate analytical methods for calculating
the spectral function of the AIM. Although several analytical
approaches have been proposed for describing the strong
coupling regime [8–14], a satisfactory analytical alternative
which can compete with the NRG in the strong coupling
regime has not been found. This has motivated us to develop
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a new functional renormalization group (FRG) approach to
the AIM which is not based on the weak coupling truncation
used by other authors [15, 16]. Our approach extends the
collective field FRG developed in [17–19], which is based
on the partial bosonization of the two-body interaction using
suitable Hubbard–Stratonovich fields. For simplicity, we focus
here on the local moment regime [1], where the energy Ed of
the d level is located below the Fermi energy, but its double
occupancy is prohibited by a strong on-site interaction U . In
the limit U → ∞ the low-energy properties of the AIM
are in this regime identical to those of the Kondo model
describing only the spin degree of freedom of the impurity.
It is then natural to decouple the interaction of the AIM in
terms of Hubbard–Stratonovich fields representing collective
spin fluctuations, which should be treated non-perturbatively
to describe the strong coupling regime.

Since we are interested in the correlation functions of the
d electrons, we simply integrate out the conduction electrons
using the coherent state functional integral. The ratio of the
partition functions with and without interaction at constant
chemical potential μ and inverse temperature β can then be
written as

Z
Z0

=
∫ D[d, d̄]e−S0[d̄,d]−SU [d̄,d]

∫ D[d, d̄]e−S0[d̄,d] , (1.2)

where the Gaussian part is given by

S0[d̄, d] =
∫ β

0
dτ

∑

σ

d̄σ (τ ) [∂τ + Ed − μ − σh] dσ (τ )

+
∫ β

0
dτ

∫ β

0
dτ ′ ∑

σ

d̄σ (τ )�σ (τ − τ ′)dσ (τ ′)

= −
∫

ω

∑

σ

[iω − ξσ
0 − �σ (iω)]d̄ωσ dωσ , (1.3)

with
ξσ

0 = Ed − μ − σh, (1.4)

and the interaction is

SU [d̄, d] = U
∫ β

0
dτ d̄↑(τ )d↑(τ )d̄↓(τ )d↓(τ ). (1.5)

Here,
∫
ω

= 1
β

∑
ω denotes summation over fermionic

Matsubara frequencies. Later we shall take the limit β → ∞
where

∫
ω

= ∫
dω
2π

. The Fourier transform of the Grassmann
fields dσ (τ ) in frequency space is defined by

dσ (τ ) =
∫

ω

e−iωτ dωσ , (1.6)

and the hybridization function is

�σ(τ) =
∫

ω

e−iωτ �σ (iω), (1.7)

with Fourier components

�σ(iω) =
∑

k

|Vk|2
iω − εk + μ + σh

. (1.8)

The 0 + 1-dimensional quantum field theory defined in
equations (1.3)–(1.5) will be the starting point of our further
calculations presented below.

Let us briefly outline the rest of this work. In section 2
we decouple the interaction (1.5) in the spin-singlet particle–
hole channel using a complex Hubbard–Stratonovich field
which describes transverse spin-flip fluctuations. By treating
the resulting field theory on the level of the Gaussian
approximation, we obtain results for the dynamic structure
factor and the self-energy in the ladder approximation.
Of course, only for small U can we expect the ladder
approximation to give reliable results. For larger couplings
we find a ferromagnetic Stoner instability, consistent with the
Hartree–Fock approximation but in contrast to well-established
results. To go beyond the simple ladder approximation, we
use in section 3 a collective field FRG approach for our
Bose–Fermi theory and implement a simple truncation to close
the set of flow equations. Our inclusion of transverse spin
fluctuations based on the FRG removes the unphysical Stoner
instability and gives results which qualitatively describe the
correct physics. However, although the quasiparticle weight
vanishes with increasing interaction as it should, it does not
obey the well-known Kondo scaling. To improve on these
results, we introduce in section 4 a new FRG approach with
partial bosonization in both the transverse and the longitudinal
channel. We discuss the ambiguities with the distribution
of weight among the two channels and show that in the
manifestly spin-rotationally invariant case we get the strongest
suppression of the quasiparticle weight. Finally, in section 5
we summarize our results and discuss some open questions.

2. Ladder approximation in the spin-singlet
particle–hole channel

2.1. Hartree–Fock approximation and Stoner instability

If we treat the interaction (1.5) within the self-consistent
Hartree–Fock approximation, we obtain the renormalized
excitation energy ξσ = ξσ

0 + δξσ , with

δξσ = U
∫

ω

G σ̄
0 (iω), (2.1)

where we have used the notation σ̄ = −σ for the spin label.
The self-consistent Hartree–Fock Green function is

Gσ
0 (iω) = 1

iω − ξσ − �σ(iω)
. (2.2)

The corresponding self-energy can be written as

δξσ = U

2
[n − σm], (2.3)

where n = n↑ +n↓ is the average occupation and m = n↑ −n↓
is the average magnetization of the impurity level. For a
sufficiently strong interaction, Hartree–Fock theory predicts a
finite value of m even for h → 0. In the wide-band limit, where
the hybridization function can be approximated by

�σ (iω) = −i�σ sgn ω, (2.4)
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the Hartree–Fock self-consistency equation for the moment m
can be evaluated analytically at zero temperature. For h = 0
(where �σ = � is independent of the spin projection) and in
the particle–hole symmetric case (where Ed − μ = −U/2 and
n = 1) the result is

m =
∫

ω

∑

σ

σ Gσ
0 (iω) = 2

π
arctan

(
Um

2�

)
. (2.5)

This equation has a ferromagnetic solution (m �= 0) if

u0 ≡ U

π�
> 1. (2.6)

This ferromagnetic Stoner instability is an artifact of the
Hartree–Fock approximation [1], which should be removed
once fluctuation corrections are properly taken into account.

2.2. Hubbard–Stratonovich transformation in the spin-singlet
particle–hole channel

The best decoupling of the electron–electron interaction in a
given model is always a very delicate question and requires,
a priori, physical insight about the model. Therefore, the
choice of the decoupling must always be motivated physically.
In the strong coupling limit we expect the transverse spin
fluctuations to play an important role in removing the Stoner
instability [11]. It is therefore natural to decouple the
interaction in the spin-singlet particle–hole channel with the
help of a bosonic Hubbard–Stratonovich field, describing
transverse spin fluctuations. To this end, we use the
antisymmetry of the Grassmann fields to write the integrand
in the interaction functional (1.5) as

Ud̄↑d↑d̄↓d↓ = −U(d̄↑d↓)(d̄↓d↑) = −Us̄(τ )s(τ ), (2.7)

where we have defined the composite spin-flip fields,

s̄(τ ) = d̄↑(τ )d↓(τ ), s(τ ) = d̄↓(τ )d↑(τ ). (2.8)

Introducing the complex bosonic Hubbard–Stratonovich fields
χ(τ) and χ̄(τ ) conjugate to s̄(τ ) and s(τ ), the ratio (1.2)
can be written as a functional integral over a six-component
superfield  = [d↑, d̄↑, d↓, d̄↓, χ, χ̄ ],

Z
ZHF

=
∫ D[]e−S0[]−S1[]

∫ D[]e−S0[] , (2.9)

where ZHF is the partition function in Hartree–Fock
approximation. The Gaussian part of the bare action is

S0[] = −
∫

ω

∑

σ

[
Gσ

0 (iω)
]−1

d̄ωσ dωσ +
∫

ω̄

U−1χ̄ω̄χω̄,

(2.10)
and the interaction part can be written as

S1[] =
∫

ω̄

[s̄ω̄χω̄ + sω̄χ̄ω̄] −
∫

ω

∑

σ

δξσ d̄ωσ dωσ , (2.11)

where

sω̄ =
∫ β

0
dτeiω̄τ s(τ ) =

∫

ω

d̄ω↓dω+ω̄,↑, (2.12)

Figure 1. Graphical representation of the bare boson–fermion
vertices of the action S1[] in equation (2.11). Solid arrows pointing
into the vertices represent dσ , while outgoing solid arrows represent
d̄σ . The small arrows indicate the spin projections. The wavy arrows
represent the spin-flip field χ (pointing into the black dots) and χ̄
(pointing out of the black dots). The direction of the arrows
associated with the wavy lines is chosen such that the incoming
arrow adds spin to the vertex.

s̄ω̄ =
∫ β

0
dτe−iω̄τ s̄(τ ) =

∫

ω

d̄ω+ω̄,↑dω↓. (2.13)

Because [Gσ
0 (iω)]−1 in the Gaussian part (2.10) of the action

is by definition the inverse Hartree–Fock Green function (2.2),
the Hartree–Fock self-energy δξσ should be subtracted from
the interaction in equation (2.11) as a counterterm. The boson–
fermion interaction in equation (2.11) can be written as

∫

ω̄

[s̄ω̄χω̄ + sω̄χ̄ω̄]

=
∫

ω̄

∫

ω

[�(d̄↑d↓χ)

0 (ω + ω̄, ω, ω̄)d̄ω+ω̄↑dω↓χω̄

+ �
(d̄↓d↑χ̄ )

0 (ω − ω̄, ω, ω̄)d̄ω−ω̄↓dω↑χ̄ω̄], (2.14)

with the bare spin-flip vertices given by

�
(d̄↑d↓χ)

0 (ω + ω̄, ω, ω̄) = �
(d̄↓d↑χ̄ )

0 (ω − ω̄, ω, ω̄) = 1. (2.15)

A graphical representation of these vertices is shown in
figure 1.

2.3. Gaussian propagator of transverse spin fluctuations

If we integrate in equation (2.9) over the fermion fields, we
obtain the effective action Seff[χ̄ , χ] of the spin-flip fields χ, χ̄ .
Expanding Seff[χ̄, χ] to quadratic order in the fields (Gaussian
approximation), we obtain

Seff[χ̄, χ] ≈
∫

ω̄

[F⊥
LA(iω̄)]−1χ̄ω̄χω̄. (2.16)

The inverse spin-flip propagator in ladder approximation (LA)
is given by

[F⊥
LA(iω̄)]−1 = U−1 − �⊥

0 (iω̄), (2.17)

where �⊥
0 (iω̄) is the non-interacting dynamic spin-flip

susceptibility

�⊥
0 (iω̄) = −

∫

ω

G↑
0 (iω)G↓

0 (iω − iω̄). (2.18)

In the wide-band limit, where �σ(iω) is given by
equation (2.4), the integration in equation (2.18) can be

3
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Figure 2. Graph of the transverse spin structure factor S⊥
LA(ω) in

ladder approximation for h = 0, u0 = U/(π�) = 0.9 and
particle–hole symmetry. The characteristic energy scale of transverse
spin fluctuations is in this approximation given by ω∗ ≈ �(1 − u0).

performed analytically at zero temperature. In this work we
only need �⊥

0 (iω̄) in the absence of an external magnetic field
and spontaneous ferromagnetism, where ξσ = ξ and �σ = �

are independent of the spin projection σ ,

�⊥
0 (iω̄) = �

π |ω̄|(|ω̄| + 2�)
ln

[
ξ 2 + (|ω̄| + �)2

ξ 2 + �2

]
. (2.19)

If we assume in addition particle–hole symmetry so that ξ =
ξ0 + δξ = 0, then equation (2.19) further simplifies to

π��⊥
0 (iω̄) = ln[1 + |ε̄|]

|ε̄|(1 + |ε̄|/2)

= 1 − |ε̄| + 5

6
ε̄2 + O(|ε̄|3), (2.20)

where ε̄ = ω̄/�. Within the LA the spectral density S⊥
LA(ω)

of transverse spin fluctuations (the dynamic structure factor) is
then given by

�⊥
LA(iω̄) = �⊥

0 (iω̄)

1 − U�⊥
0 (iω̄)

=
∫ ∞

0

dω

π
S⊥

LA(ω)
2ω

ω2 + ω̄2
,

(2.21)
or, equivalently,

Im �⊥
LA(ω + i0) = sgn ωS⊥

LA(|ω|). (2.22)

A graph of S⊥
LA(ω) for u0 = U/(π�) = 0.9 is shown in

figure 2. In the regime 0 < 1 − u0 � 1 the LA predicts a
well-defined peak in the dynamic structure factor at the energy
scale

ω∗ = �(1 − u0). (2.23)

The width of the peak is of the order of �. In fact, in this
regime the low-frequency behavior of S⊥

LA(ω) can easily be
obtained analytically. For |ω| � � we find

�⊥
LA(iω̄) = 1

π

1

ω∗ + u0|ω̄| , (2.24)

so the corresponding structure factor is

S⊥
LA(ω) ≈ 1

π

ω

ω2∗ + ω2
. (2.25)

For u0 → 1 the energy scale ω∗ vanishes, indicating an
instability towards spontaneous ferromagnetism, as suggested

Figure 3. Diagrams contributing to the fermionic self-energy �(iω)
in the particle–hole ladder approximation; see equation (2.26). Solid
arrows denote fermionic Hartree–Fock Green functions and wavy
lines denote the bare interaction. The first-order (Hartree) diagram is
subtracted in equation (2.27).

by the Hartree–Fock approximation discussed in section 2.1.
Because we know that the AIM does not exhibit spontaneous
ferromagnetism for arbitrary values of U , we expect the LA
to only be accurate for u0 � 1. Before employing more
sophisticated FRG methods to include fluctuation corrections
which remove this unphysical Stoner instability, it is instructive
to consider the d electron self-energy within the LA, which we
shall do in section 2.4.

2.4. Fermionic self-energy in the ladder approximation

The LA in the particle–hole channel gives the following self-
energy for the d electrons:

�σ (iω) =
∫

ω̄

F⊥
LA(iω̄)G σ̄

0 (iω − iσω̄). (2.26)

The infinite series of Feynman diagrams which is included in
equation (2.26) is shown in figure 3. Subtracting the Hartree–
Fock correction δξσ given in equation (2.1) which formally
arises from the counterterm in equation (2.11), the frequency-
dependent part of the self-energy can also be written as

δ�σ (iω) ≡ �σ (iω) − δξσ = U 2
∫

ω̄

�⊥
LA(iω̄)G σ̄

0 (iω − iσω̄).

(2.27)
Of particular interest is the quasiparticle residue Zσ , which is
defined by

Zσ = 1

1 − ∂ Re �σ (ω+i0)

∂ω

∣∣∣
ω=0

. (2.28)

In figure 4 we show the prediction of the LA for the
interaction dependence of the quasiparticle residue in the
non-magnetic, particle–hole symmetric case with and without
linearization of the spin-flip susceptibility �⊥

0 (iω̄). Obviously,
the linearization of the spin-flip susceptibility does lead to
modest changes of the Z -factor. The vanishing of Z at u0 = 1
is an unphysical artifact of the LA, which implicitly contains
the Stoner instability via the spin susceptibility. In section 3
we shall show how to remove this instability by including the
feedback of the fermionic wavefunction renormalization on the
spin susceptibility.

3. FRG with partial bosonization in the spin-singlet
particle–hole channel

To go beyond the ladder approximation, we now use the
collective field FRG approach developed in [17–19] to study

4
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Figure 4. Graph of the quasiparticle residue Z as a function of
u0 = U/(π�) within LA for h = 0 and particle–hole symmetric
filling Ed − μ = −U

2 . While in the calculation of the solid line
(blue) the full polarization was used, in the calculation of the dashed
line (black) we have used the linearized spin susceptibility
π��⊥

0 (iω̄) ≈ 1 − |ω̄|/�.

the mixed Bose–Fermi theory defined by the action S[] =
S0[] + S1[] in equations (2.10) and (2.11). In fact, this
theory has a formal similarity with the theory describing two
coupled metallic chains, which was studied by means of the
FRG in [20]. The exact FRG flow equations in the present
problem are therefore represented by the same Feynman
diagrams as were given in [20].

3.1. Exact FRG flow equations

To derive exact FRG flow equations, we modify our original
model by introducing an ultraviolet cutoff �0 and an infrared
cutoff � into the Gaussian part (2.10) of the action. In
our renormalization group (RG) scheme the infrared cutoff
is introduced only in the bosonic sector and is reduced
from its initial value � = �0 to zero during the RG
flow [17–20]. In previous FRG studies of the AIM, fermionic
degrees of freedom were directly integrated out and a sharp
Matsubara frequency cutoff was employed [15, 16]. For our
purpose it is better to work with a smooth cutoff in order
to avoid artificial singularities introduced by a sharp cutoff.
Formally, we introduce the cutoff via the following substitution
in the bosonic part of the Gaussian action S0[] given in
equation (2.10):

U−1 → U−1 + R�(iω̄), (3.1)

where

R�(iω̄) = �

π�2
R(|ω̄|/�), (3.2)

and the function R(x) is given by [21]

R(x) = (1 − x)�(1 − x). (3.3)

The flowing spin-flip propagator is then

F⊥
� (iω̄) = [U−1 − �⊥

�(iω̄) + R�(iω̄)]−1

= U

1 + U
[
R�(iω̄) − �⊥

�(iω̄)
] , (3.4)

where �⊥
�(iω̄) is the flowing irreducible transverse spin

susceptibility. Introducing the corresponding single-scale

Figure 5. Exact flow equation for the fermionic self-energy �σ
�(ω)

with Hubbard–Stratonovich decoupling in the spin-singlet
particle–hole channel. In our cutoff scheme only the bosonic
propagator is regularized via a cutoff. Thick black arrows denote the
flowing fermion propagator given in equation (3.8), while thick wavy
arrows with a slash denote the flowing single-scale spin-flip
propagator defined in equation (3.5). The irreducible vertices are
denoted by shaded triangles with the appropriate number of external
legs. The dots over the fermionic two-point vertices on the left-hand
side represent the derivative with respect to the RG cutoff �.

propagator

Ḟ⊥
� (iω̄) = [−∂� R�(iω̄)][F⊥

� (iω̄)]2, (3.5)

the exact FRG flow equation for the irreducible self-energy of
spin-σ electrons can then be written as

∂��σ
�(iω) =

∫

ω̄

Ḟ⊥
� (iω̄)�

(d̄σ dσ χ̄χ)

� (ω, ω; ω̄, ω̄)

+
∫

ω̄

Ḟ⊥
� (iω̄)G σ̄

�(iω − iσω̄)

× �
(d̄σ dσ̄ χσ )

� (ω, ω − σω̄, σ ω̄)

× �
(d̄σ̄ dσ χσ̄ )

� (ω − σω̄, ω, σ ω̄). (3.6)

Here, �
(d̄σ dσ χ̄χ)

� (ω, ω; ω̄, ω̄) is the flowing irreducible vertex
with two bosonic and two fermionic external legs, and
for the labels of the flowing three-legged boson–fermion
vertices we have used the short notation χ↑ = χ and

χ↓ = χ̄ , so the non-zero combinations are �
(d̄↑d↓χ↑)

� (ω, ω −
ω̄, ω̄) = �

(d̄↑d↓χ)

� (ω,ω − ω̄, ω̄) and �
(d̄↓d↑χ↓)

� (ω − ω̄, ω, ω̄) =
�

(d̄↓d↑χ̄ )

� (ω − ω̄, ω, ω̄). Actually, the three-legged boson–
fermion vertices have the symmetry

�
(d̄↓d↑χ̄)

� (ω − ω̄, ω, ω̄) = �
(d̄↑d↓χ)

� (ω,ω − ω̄, ω̄), (3.7)

so the two vertices in equation (3.6) have the same value. The
flowing d level Green function Gσ

�(iω) is related to the flowing
self-energy via the Dyson equation,

Gσ
�(iω) = 1

iω − ξσ
0 − �σ (iω) − �σ

�(iω)
. (3.8)

A graphical representation of the exact FRG flow equa-
tion (3.6) is shown in figure 5. The initial values of the
boson–fermion vertices are equal to the bare vertices given
in equation (2.15), which is unity with our normalization.
In principle, the integration of the FRG flow equation (3.6)
generates also the Hartree–Fock contribution (2.3) to the self-
energy as a boundary term which is of first order in U and

5
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appears when we integrate this equation up to � = 0. In
practice, it is better to drop this first-order term and include
the Hartree–Fock self-energy from the beginning into the
d electron propagator, which amounts to imposing the initial
condition

�σ
�0

(iω) = δξσ = U

2
[n − σm], (3.9)

so the initial Gσ
�0

(iω) is the Hartree–Fock Green function.

3.2. Truncation of the FRG equations via Dyson–Schwinger
equations

To obtain a closed system of RG flow equations, we
need additional RG equations for the four-legged boson–

fermion vertex �
(d̄σ dσ χ̄χ)

� , for the three-legged boson–fermion

vertices �
(d̄↑d↓χ)

� and �
(d̄↓d↑χ̄ )

� , as well as for the flowing
irreducible spin-flip susceptibility �⊥

�(iω̄) which determines
the single-scale spin-flip propagator Ḟ⊥

� (iω̄). The exact FRG
flow equations for the three- and four-legged boson–fermion
vertices have been written down diagrammatically in [20]; the
crucial point is that the right-hand sides of these flow equations
vanish at the initial scale � = �0 because they depend
on higher-order vertices which are not contained in the bare
action. It is therefore reasonable to ignore the RG flow of the
three- and four-legged boson–fermion vertices, which amounts
to truncating the flow equation (3.6) by replacing these vertices
by their initial values,

�
(d̄σ dσ χ̄χ)

� (ω, ω; ω̄, ω̄) ≈ �
(d̄σ dσ χ̄χ)

�0
(ω, ω; ω̄, ω̄) = 0,

(3.10a)

�
(d̄↑d↓χ)

� (ω,ω−ω̄, ω̄) ≈ �
(d̄↑d↓χ)

�0
(ω, ω−ω̄, ω̄) = 1, (3.10b)

�
(d̄↓d↑χ̄ )

� (ω− ω̄, ω, ω̄) ≈ �
(d̄↓d↑χ̄ )

�0
(ω− ω̄, ω, ω̄) = 1. (3.10c)

To close our system of flow equations, we still need
an additional equation for the flowing spin-flip susceptibility
�⊥

�(iω̄), which in our cutoff scheme involves the pure boson
vertex with four external legs [20]. Fortunately, we can avoid
the explicit analysis of this equation by using the Dyson–
Schwinger equation for our mixed boson–fermion theory,
which implies an exact skeleton equation, relating the flowing
spin-flip susceptibility to the flowing fermionic Green function
Gσ

�(iω) and the flowing three-legged boson–fermion vertices.
Using the same method as in appendix B of [17], we obtain the
skeleton equation

�⊥
�(iω̄) = −

∫

ω

G↑
�(iω)G↓

�(iω − iω̄)�
(d̄↑d↓χ)

� (ω,ω − ω̄, ω̄)

= −
∫

ω

G↑
�(iω)G↓

�(iω − iω̄)�
(d̄↓d↑χ̄ )

� (ω − ω̄, ω, ω̄). (3.11)

A graphical representation of this equation is shown in figure 6.
Note that equation (3.7) guarantees that the two lines in
equation (3.11) are indeed identical.

For simplicity, let us focus now on the non-magnetic case,
where all correlation functions are spin independent and we
may omit the spin labels. Given our approximation (3.10b)
and (3.10c), the skeleton equation (3.11) then reduces to

�⊥
�(iω̄) = −

∫

ω

G�(iω)G�(iω − iω̄), (3.12)

Figure 6. Graphical representation of the skeleton equation (3.11)
relating the flowing spin-flip susceptibility �⊥

�(iω̄) to the exact
fermionic Green functions and the three-legged boson–fermion
vertices. The two diagrams are equivalent.

while the FRG flow equation (3.6) simplifies to

∂���(iω) =
∫

ω̄

Ḟ⊥
� (iω̄)G�(iω − iω̄). (3.13)

Equations (3.12) and (3.13) form a closed system of integro-
differential equations for the flowing self-energy ��(iω) of
the d electrons. Recall that equation (3.13) depends implicitly
on the flowing spin-flip susceptibility via equations (3.4)
and (3.5). Anticipating that there is no spontaneous
magnetism, the initial condition (3.9) for the fermionic self-
energy at scale � = �0 is simply

��0(iω) = Un

2
. (3.14)

In the particle–hole symmetric case where Ed − μ = −U/2
and n = 1 this cancels precisely the energy ξσ

0 = Ed − μ in
the Hartree–Fock d electron propagator G�0(iω), which in the
wide-band limit is therefore given by

G�0(iω) = 1

iω + i� sgn ω
. (3.15)

We next show that the solution of equations (3.12) and (3.13)
does not suffer from the Stoner instability and correctly
predicts Fermi liquid behavior [1] for arbitrary U . We shall
restrict ourselves to the particle–hole symmetric case from now
on.

3.3. Low-energy truncation

The coupled system of integro-differential equations given by
equations (3.4), (3.5), (3.12), (3.13) can be solved numerically
for arbitrary frequencies, but this is beyond the scope of this
work. Here, we shall focus on the low-frequency range |ω| �
�. In this regime, it is reasonable to replace the flowing
d electron propagator appearing on the right-hand sides of
equations (3.12) and (3.13) by the low-frequency Fermi liquid
form

G�(iω) = Zl

iω + i�l sgn ω
, (3.16)

6
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where the flowing wavefunction renormalization factor is
defined by

Zl = 1

1 − ∂��(iω)

∂(iω)

∣∣∣
ω=0

, (3.17)

and the renormalized flowing hybridization is

�l = Zl�. (3.18)

We consider Zl and �l to be functions of the logarithmic
flow parameter l = − ln(�/�0). The approximation (3.16)
is certainly not sufficient at high frequencies, so we cannot
recover in this way the high-energy Hubbard peaks at strong
coupling which are known to appear at an energy scale of order
U/2.

Given the approximation (3.16), the frequency integration
in equation (3.12) is easily carried out analytically, resulting in

�⊥
�(iω̄) = Z 2

l

π |ω̄|
ln

(
1 + |ω̄|

�l

)

[
1 + |ω̄|

2�l

] = Zl

π�
f

( |ω̄|
�l

)
, (3.19)

with

f (x) = ln(1 + x)

x(1 + x/2)
. (3.20)

Introducing the dimensionless coupling constants

ul = Zlu0 = ZlU

π�
= Z 2

l U

π�l
, (3.21)

λl = �

Zl�
= �

�l
, (3.22)

the single-scale propagator defined in (3.5) can then be written
as

Ḟ⊥
� (iω̄) = − π

Z 2
l

�(� − |ω̄|)
[

1
ul

+ λl − |ω̄|
�l

− f (
|ω̄|
�l

)
]2

. (3.23)

Actually, for consistency with our approximation (3.16) which
is based on the expansion of the fermionic self-energy to linear
order in frequency, we should also expand the bosonic self-
energy �⊥

�(iω̄) to linear order in ω̄. Using f (x) = 1 − x +
O(x2), we have

π��⊥
�(iω̄) ≈ Zl − |ω̄|

�
+ O(ω̄2). (3.24)

As compared with the non-interacting susceptibility (2.20),
the leading constant term in equation (3.24) is reduced by
the wavefunction renormalization factor, while the linear term
is not renormalized. In this approximation, our single-scale
propagator (3.23) simplifies to

Ḟ⊥
� (iω̄) = − π

Z 2
l

�(� − |ω̄|)
[

1
ul

+ λl − 1
]2

, (3.25)

which by construction of the regulator function given in
equations (3.2) and (3.3) is constant for frequencies below
the running cutoff �. To determine Zl , we calculate the

flowing anomalous dimension ηl , which is directly related
to the derivative of the self-energy with respect to the flow
parameter,

ηl = −∂l ln Zl = Zl� lim
ω→0

∂

∂(iω)
∂���(iω). (3.26)

Substituting equations (3.13) and (3.16), we obtain

ηl = Z 2
l � lim

ω→0

∂

∂(iω)

∫

ω̄

Ḟ⊥
� (iω̄)

iω − iω̄ + i�l sgn(ω − ω̄)
. (3.27)

If we naively interchange the order of integration and
differentiation, we encounter an ambiguous expression of the
form

lim
ω→0

∂

∂(iω)

[
1

iω − iω̄ + i�l sgn(ω − ω̄)

]

= 1

[ω̄ + �l sgn ω̄]2
+ 2�lδ(ω̄)

[�l(2�(ω̄) − 1)]2
, (3.28)

where we have written sgn ω̄ = 2�(ω̄) − 1. As pointed out
by Morris [22], one should interpret the product of the delta
function δ(x) with any function f (�(x)) of the step function
as

δ(x) f (�(x)) = δ(x)

∫ 1

0
dt f (t). (3.29)

Using this relation, equation (3.28) reduces to

lim
ω→0

∂

∂(iω)

[
1

iω − iω̄ + i�l sgn(ω − ω̄)

]

= 1

[|ω̄| + �l]2
− 2δ(ω̄)

�l
, (3.30)

so equation (3.27) takes the form

ηl = − Zl�

π�
Ḟ⊥

� (i0) + Z 2
l �

∫

ω̄

Ḟ⊥
� (iω̄)

(|ω̄| + �l)2
. (3.31)

With the single-scale propagator given in equation (3.25), the
frequency integration is trivial and we finally obtain from
equation (3.27) for the flowing anomalous dimension

ηl = λl

[1 + λl][ 1
ul

+ λl − 1]2
. (3.32)

The right-hand side of this expression depends on Zl via
the flowing couplings ul and λl defined in equations (3.21)
and (3.22) such that

∂l Zl = −ηl Zl (3.33)

is an ordinary differential equation for the flowing wave-
function renormalization factor Zl , which is easily solved
numerically. The result for the flowing Zl is shown in figure 7.
Obviously, for l → ∞ the wavefunction renormalization
factor approaches a finite limit, Z = liml→∞ Zl , which we
show in figure 8 as a function of the bare coupling u0. We now
obtain, in contrast to the ladder approximation result discussed
in section 2, a finite Z for all values of the interaction, so the
fluctuations included in our simple FRG approach are sufficient
to remove the unphysical Stoner instability. On the other hand,
quantitatively our truncation of the exact FRG flow equations
does not reproduce the correct strong coupling behavior of the
quasiparticle residue, which is known to exhibit the same

7
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Figure 7. Numerical solution of equation (3.33) for different values
of the bare coupling u0 = U/(π�). Here, l∗ is the scale where the
running cutoff � is equal to the hybridization �, i.e., �0e−l∗ = �.

exponential suppression as the Kondo temperature for u0 →
∞ (see [23]),

Zexact ∼
√

8u0

π
exp[−π2u0/8]. (3.34)

From the numerical solution of our flow equation given in
equations (3.32) and (3.33) we find asymptotically

Z ∼ 0.445

u0
, u0 � 1. (3.35)

The fact that this is much larger than the exact result (3.34)
indicates that our approach underestimates the strength of
fluctuations. In section 4 we shall therefore include the
longitudinal spin fluctuation channel and show that it indeed
further suppresses the value of Z , although within our
approximations we are unable to recover the exponential
suppression described by equation (3.34).

4. FRG with partial bosonization of transverse and
longitudinal spin fluctuations

4.1. Multi-channel Hubbard–Stratonovich transformation

Using the antisymmetry of the Grassmann fields, the local
Hubbard interaction can be written in infinitely many
equivalent ways, such as

Un↑(τ )n↓(τ ) = −U ‖

2
m2(τ ) − U⊥s̄(τ )s(τ ), (4.1)

where
U ‖ + U⊥ = U. (4.2)

Here, nσ (τ ) = d̄σ (τ )dσ (τ ) and the composite fields m(τ ) =∑
σ σnσ (τ ), s̄(τ ) = d̄↑(τ )d↓(τ ), and s(τ ) = d̄↓(τ )d↑(τ )

represent the longitudinal and transverse spin components;
see also equation (2.8). Note that by construction of the
decomposition (4.1) we have included both longitudinal and
transverse spin fluctuations, but no charge fluctuations. In
section 3 we have satisfied equation (4.1) by setting U ‖ =
0 and U⊥ = U , which is the natural choice if one
is interested in bosonizing the transverse spin fluctuations.
Alternatively, one could set U ‖ = U and U⊥ = 0, so

Figure 8. The solid line is the wavefunction renormalization factor
Z = liml→∞ Zl as a function of the bare coupling u0 obtained from
the numerical solution of our truncated flow equation (3.33). For
comparison, we show as the dashed line the result from the ladder
approximation.

longitudinal spin fluctuations can be introduced via a suitable
Hubbard–Stratonovich field. The ambiguity associated with
equations (4.1) and (4.2) has been discussed for many decades
in the literature [24–29]. Depending on the physical problem
of interest, certain special choices of U ‖ and U⊥ can be
advantageous [28]. At this point, we simply leave the precise
values of U ‖ and U⊥ unspecified but assume that both are
positive and satisfy equation (4.2). Later we shall show that
in the strong coupling regime of the particle–hole symmetric
AIM the optimal choice is U ‖ = U/3 and U⊥ = 2U/3. In
this case the decomposition (4.1) is manifestly spin-rotational
invariant and can be written as

Un↑(τ )n↓(τ ) = −U

6
(�s(τ ))

2 , (4.3)

where the composite vector field �s(τ ) = d†(τ )�σd(τ )

represents the spin vector. Here, d†(τ ) = [d̄↑(τ ), d̄↓(τ )] and
�σ is the usual matrix vector of Pauli matrices.

Starting from the representation (4.1), we decouple the
interaction in the longitudinal spin channel using a real
Hubbard–Stratonovich field η and in the transverse spin
channel using the complex Hubbard–Stratonovich fields χ

and χ̄ introduced in section 2.2. The partition function
can then be written as in equation (2.9), where  =
[d↑, d̄↑, d↓, d̄↓, η, χ, χ̄ ] is now a seven-component superfield.
For the Gaussian part of the action we then obtain instead of
equation (2.10)

S0[] = −
∫

ω

∑

σ

[
Gσ

0 (iω)
]−1

d̄ωσ dωσ

+
∫

ω̄

(U⊥)−1χ̄ω̄χω̄ + 1
2

∫

ω̄

(U ‖)−1η−ω̄ηω̄, (4.4)

and the interaction part can be written as

S1[] =
∫

ω̄

[
s̄ω̄χω̄ + sω̄χ̄ω̄ + m−ω̄ηω̄

]

−
∫

ω

∑

σ

δξσ d̄ωσ dωσ . (4.5)

The counterterm δξσ in equation (4.5) is subtracted to correct
for the inclusion of the Hartree–Fock self-energy in the

8
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propagator Gσ
0 (iω) in equation (4.4). While the transverse spin

components sω̄ and s̄ω̄ are given by equations (2.12) and (2.13),
the longitudinal spin component is given by

mω̄ =
∫ β

0
dτeiω̄τ m(τ ) =

∫

ω

∑

σ

σ d̄ωσ dω+ω̄,σ . (4.6)

For simplicity, we shall focus here on the non-magnetic,
particle–hole symmetric case. Since in the strong coupling
limit the low-energy physics is expected to be dominated by
spin fluctuations, we set up the FRG by introducing a cutoff
only in the bosonic fields η, χ and χ̄ associated with spin
fluctuations. Particle–hole symmetry guarantees that the exact
self-energy at zero frequency cancels the term Ed − μ, so we
may approximate Gσ

0 (iω) by equation (3.15).

4.2. FRG flow equations

We now generalize equation (3.1) by introducing cutoffs into
both kinds of bosonic propagators appearing in the Gaussian
action (4.4),

(Uα)−1 → (Uα)−1 + Rα
�(iω̄), (4.7)

where α =‖,⊥ labels the two kinds of spin fluctuations, and
the cutoff functions are

R‖(iω̄) = 2�

π�2
R

( |ω̄|
�

)
, (4.8a)

R⊥(iω̄) = �

π�2
R

( |ω̄|
�

)
, (4.8b)

with R(x) given in equation (3.3). From the general FRG flow
equations for mixed boson–fermion theories given in [17, 19]
we then obtain the following exact flow equation for the self-
energy,

∂��σ
�(iω) =

∫

ω̄

Ḟ‖
�(iω̄)�

(d̄σ dσ ηη)

� (ω, ω; ω̄,−ω̄)

+
∫

ω̄

Ḟ⊥
� (iω̄)�

(d̄σ dσ χ̄χ)

� (ω, ω; ω̄, ω̄)

+
∫

ω̄

Ḟ‖
�(iω̄)Gσ

�(iω − iω̄)�
(d̄σ dσ η)

� (ω, ω − ω̄, ω̄)

× �
(d̄σ dσ η)

� (ω − ω̄, ω,−ω̄)

+
∫

ω̄

Ḟ⊥
� (iω̄)G σ̄

�(iω − iσω̄)�
(d̄σ dσ̄ χσ )

� (ω, ω − σω̄, σ ω̄)

× �
(d̄σ̄ dσ χσ̄ )

� (ω − σω̄, ω, σ ω̄), (4.9)

which generalizes equation (3.6) and is shown graphically in
figure 9. The superscripts label the different kinds of vertices;
for the boson–fermion vertices associated with the transverse
spin field we have used again the short notation χ↑ = χ and
χ↓ = χ̄ ; see equation (3.6). The longitudinal and transverse
single-scale propagators are

Ḟα
�(iω̄) = [−∂� Rα

�(iω̄)][Fα
�(iω̄)]2, (4.10)

with

Fα
�(iω̄) = [(Uα)−1 − �α

�(iω̄) + Rα
�(iω̄)]−1, (4.11)

Figure 9. Graphical representation of the exact FRG flow
equation (4.9) for the self-energies �

↑
� and �

↓
�. The longitudinal

spin field η is represented by dashed lines; the other symbols are the
same as in figure 5.

where �α
�(iω̄) are the corresponding irreducible spin

susceptibilities. As discussed in section 3.2, we use the
skeleton equations (which can be formally derived from
the Dyson–Schwinger equations) to relate the flow of the
susceptibilities to the flow of the d electron propagators and
the three-legged boson–fermion vertex. The skeleton equation
for the transverse susceptibility �⊥

�(iω̄) has already been
discussed in section 3.2, see equation (3.11); it can also be
written as

�⊥
�(iω̄) = −

∫

ω

Gσ
�(iω)G σ̄

�(iω − iσω̄)

× �
(d̄σ dσ̄ χσ )

� (ω, ω − σω̄, ω̄). (4.12)

The corresponding skeleton equation for the longitudinal spin
susceptibility is

�
‖
�(iω̄) = −

∫

ω

∑

σ

σ Gσ
�(iω)Gσ

�(iω − iω̄)

× �
(d̄σ dσ η)

� (ω, ω − ω̄, ω̄). (4.13)

To obtain a closed RG flow equation for the self-energy, we
still need flow equations for the vertices with three and four
external legs appearing in equation (4.9). As in section 3.2,
we simply set all mixed boson–fermion vertices with four
external legs equal to zero, because these vertices vanish
at the initial scale. However, in contrast to the case for
the FRG with only transverse spin fluctuations discussed in
section 3.2, the renormalization of the three-legged boson–
fermion vertices is now important. In the approximation where
mixed boson–fermion vertices with four and more external legs
are ignored, the FRG flow equation for the longitudinal three-
legged boson–fermion vertex is

∂��
(d̄σ dσ η)

� (ω + ω̄, ω, ω̄)

=
∫

ω̄′
Ḟ‖

�(iω̄′)Gσ
�(iω + iω̄ + i ω̄′)Gσ

�(iω + iω̄′)

9
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Figure 10. Graphical representation of the FRG flow equation (4.14)

for the longitudinal boson–fermion vertices �
(d̄↑d↑η)

� (upper graph)

and �
(d̄↓d↓η)

� (lower graph).

× �
(d̄σ dσ η)

� (ω + ω̄, ω + ω̄ + ω̄′,−ω̄′)

× �
(d̄σ dσ η)

� (ω + ω̄ + ω̄′, ω + ω̄′, ω̄)

× �
(d̄σ dσ η)

� (ω + ω̄′, ω, ω̄′)

+
∫

ω̄′
Ḟ⊥

� (−iσω̄′)G σ̄
�(iω + iω̄ + iω̄′)G σ̄

�(iω + iω̄′)

× �
(d̄σ dσ̄ χσ )

� (ω + ω̄, ω + ω̄ + ω̄′,−σω̄′)

× �
(d̄σ dσ η)

� (ω + ω̄ + ω̄′, ω + ω̄′, ω̄)

× �
(d̄σ̄ dσ χσ̄ )

� (ω + ω̄′, ω,−σω̄′), (4.14)

while the corresponding flow equation for the transverse vertex
reads

∂��
(d̄σ dσ̄ χσ )

� (ω + ω̄, ω, σ ω̄)

=
∫

ω̄′
Ḟ‖

�(iω̄′)Gσ
�(iω + iω̄ + iω̄′)G σ̄

�(iω + iω̄′)

× �
(d̄σ dσ η)

� (ω + ω̄, ω + ω̄ + ω̄′,−ω̄′)

× �
(d̄σ dσ̄ χσ )

� (ω + ω̄ + ω̄′, ω + ω̄′, σ ω̄)

× �
(d̄σ̄ dσ̄ η)

� (ω + ω̄′, ω, ω̄′). (4.15)

Graphical representations of equations (4.14) and (4.15) are
shown in figures 10 and 11. From S1[] in equation (4.5) we
see that the initial conditions for the three-legged vertices at
scale � = �0 are

�
(d̄σ dσ η)

�0
(ω + ω̄, ω, ω̄) = σ, (4.16a)

�
(d̄σ dσ̄ χσ )

�0
(ω + ω̄, ω, σ ω̄) = 1. (4.16b)

Figure 11. Graphical representation of the FRG flow equation (4.15)

for the transverse boson–fermion vertices �
(d̄↑d↓χ)

� (upper graph) and

�
(d̄↓d↑ χ̄)

� (lower graph).

4.3. Low-energy truncation

To make further progress, we now neglect the frequency
dependence of the three-legged boson–fermion vertices,
setting

�
(d̄σ dσ η)

� (ω + ω̄, ω, ω̄) ≈ σγ
‖
�, (4.17)

�
(d̄σ dσ̄ χσ )

� (ω + ω̄, ω, σ ω̄) ≈ γ ⊥
� . (4.18)

Keeping in mind that we have also neglected all vertices
involving more than three external legs, our exact FRG flow
equation (4.9) for the self-energy reduces to

∂��σ
�(iω) = (γ

‖
�)2

∫

ω̄

Ḟ‖
�(iω̄)Gσ

�(iω − iω̄)

+ (γ ⊥
� )2

∫

ω̄

Ḟ⊥
� (iω̄)G σ̄

�(iω − iσω̄). (4.19)

Moreover, the approximate FRG flow equation (4.14) for the
longitudinal spin-fermion vertex reduces to

∂�γ
‖
� = (γ

‖
�)3

∫

ω̄

Ḟ‖
�(iω̄)[G↑

�(iω̄)]2

− γ
‖
�(γ ⊥

� )2
∫

ω̄

Ḟ⊥
� (iω̄)[G↓

�(−iω̄)]2, (4.20)

while the FRG equation (4.15) for the transverse spin-fermion
vertex becomes

∂�γ ⊥
� = −γ ⊥

� (γ
‖
�)2

∫

ω̄

Ḟ‖
�(iω̄)G↑

�(iω̄)G↓
�(iω̄). (4.21)

Within the same approximation, the skeleton equations (4.12)
and (4.13) for the spin susceptibilities are

�
‖
�(iω̄) = −γ

‖
�

∫

ω

∑

σ

Gσ
�(iω)Gσ

�(iω − iω̄), (4.22)

�⊥
�(iω̄) = −γ ⊥

�

∫

ω

Gσ
�(iω)G σ̄

�(iω − iσω̄). (4.23)

Equations (4.19)–(4.23) form a closed system of integro-
differential equations for the frequency-dependent self-energy
�σ

�(iω) and the frequency-independent parts γ
‖
� and γ ⊥

� of
the three-legged boson–fermion vertices. In order to make

10
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progress analytically, let us now approximate the flowing
d electron Green function on the right-hand sides of the
flow equation by its low-energy Fermi liquid form (3.16).
Then the integrations in equations (4.22) and (4.23) can be
performed analytically. For simplicity, we focus again on the
non-magnetic particle–hole symmetric case and omit the spin
labels. We then obtain

�
‖
�(iω̄) = 2Zl

π�
γ

‖
l f

( |ω̄|
�l

)
, (4.24)

�⊥
�(iω̄) = Zl

π�
γ ⊥

l f

( |ω̄|
�l

)
, (4.25)

where the function f (x) is given in equation (3.20). The
bosonic single-scale propagators can then be written as

Ḟ‖
�(iω̄) = − π

2Z 2
l

�(� − |ω̄|)
[

1
u‖

l

+ λl − |ω̄|
�l

− γ
‖
l f

(
|ω̄|
�l

)]2
, (4.26)

Ḟ⊥
� (iω̄) = − π

Z 2
l

�(� − |ω̄|)
[

1
u⊥

l
+ λl − |ω̄|

�l
− γ ⊥

l f
(

|ω̄|
�l

)]2
. (4.27)

Here, we have introduced again the notation λl = �/�l =
�/(Zl�), and the running interaction constants u‖

l and u⊥
l are

defined by

u‖
l = Zl

2U ‖

π�
, u⊥

l = Zl
U⊥

π�
. (4.28)

In terms of the dimensionless bare couplings u‖
0 and u⊥

0 the
condition (4.2) reads

u‖
0/2 + u⊥

0 = u0. (4.29)

As discussed in section 3.3, for consistency we expand the
function f (|ω̄|/�l) in equations (4.24) and (4.25) to linear
order in frequency as in equation (3.24). Then the frequency
integrations in equations (4.19)–(4.21) can be performed
analytically and we obtain the following system of RG flow
equations for the three running couplings Zl , γ

‖
l , and γ ⊥

l ,

∂l Zl

Zl
= −η

‖
l − η⊥

l , (4.30)

∂lγ
‖
l

γ
‖
l

= −1

2
A‖

l + A⊥
l , (4.31)

∂lγ
⊥
l

γ ⊥
l

= 1

2
A‖

l , (4.32)

where

η
‖
l = (γ

‖
l )2λl

2[1/u‖
l + λl − γ

‖
l ]2

− 1

2
A‖

l , (4.33)

η⊥
l = (γ ⊥

l )2λl

[1/u⊥
l + λl − γ ⊥

l ]2
− A⊥

l , (4.34)

Aα
l = (γ α

l )2λl I (1/uα
l + λl − γ α

l , γ α
l − 1, λl). (4.35)

Here, we have introduced the dimensionless integral

I (a, b, λ) =
∫ λ

0
dx

1

(a + bx)2(1 + x)2

= λ

(a − b)2

[
1

1 + λ
+ b2

a(a + bλ)

]

− 2b

(a − b)3
ln

[
a(1 + λ)

a + bλ

]
. (4.36)

Of special interest is the manifestly spin-rotationally invariant
decomposition (4.3). In this case U ‖ = U⊥/2 = U/3, such
that each of the longitudinal and two transverse channels has
the same weight. In terms of the dimensionless bare couplings
u‖

0 and u⊥
0 defined in equations (4.28) we therefore have u‖

0 =
u⊥

0 = 2u0/3. It is now easy to see that for any l we have
u‖

l = u⊥
l = 2ul/3 with ul = Zlu0 and γl ≡ γ

‖
l = γ ⊥

l . Our
flow equations (4.30)–(4.32) then reduce to

∂l Zl

Zl
= −ηl, (4.37)

∂lγl

γl
= 1

2
Al, (4.38)

where

ηl = 3γ 2
l λl

2
[
3/(2ul) + λl − γl

]2
− 3

2
Al, (4.39)

Al = γ 2
l λl I (3/(2ul) + λl − γl, γl − 1, λl) . (4.40)

The factors of 3 appearing here are related to the fact
that for this choice of parameters we have three equivalent
channels. Clearly, our truncated flow equations respect the
spin-rotation symmetry of the problem such that for this special
decomposition we can expect the best results.

4.4. Results

The three-dimensional system of differential equations given
in equations (4.30)–(4.32) can easily be solved numerically.
An example of a typical RG flow is shown in figure 12.
Obviously, the wavefunction renormalization factor decreases
monotonically as the RG is iterated, while the vertex
corrections γ

‖
l and γ ⊥

l both increase. The strongest variations
occur at the scale l∗ where the effective cutoff �0e−l∗ is equal
to the hybridization �.

Before discussing the behavior of Z = liml→∞ Zl in
the strong coupling regime, let us fix the optimal choice of
the relative weight of the bare couplings U ‖ and U⊥ in the
Hubbard–Stratonovich decoupling (4.1). In figure 13 we show
the dependence of the wavefunction renormalization factor on
the choice of u‖

0/u⊥
0 for fixed values of u0. It turns out that all

curves have a pronounced plateau with a minimum precisely
at u‖

0/u⊥
0 = 1, which corresponds to the manifestly spin-

rotationally invariant decoupling (4.3). If we fix the choice of
the Hubbard–Stratonovich decoupling by demanding that first-
order variations of the results around the optimal choice should
vanish, then we are naturally led to the decoupling (4.3). For
the rest of this section we shall therefore use the manifestly
spin-rotationally invariant choice u‖

0 = u⊥
0 = 2u0/3.

11
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Figure 12. Typical flow of the wavefunction renormalization factor
Zl and of the frequency-independent parts γ ⊥

l and γ
‖

l of the
boson–fermion vertices obtained from the numerical solution of
equations (4.30)–(4.32). The scale l∗ = ln(�0/�) is the same as in
figure 7. The curves are for u‖

0 = 1 and u⊥
0 = 1.5, such that

u0 = u‖
0/2 + u⊥

0 = 2.

Figure 13. Dependence of the quasiparticle residue Z on the choice
of the Hubbard–Stratonovich decoupling, parameterized by the ratio
u‖

0/u⊥
0 , with u‖

0/2 + u⊥
0 = u0. All curves exhibit a local minimum

precisely at u‖
0/u⊥

0 = 1, corresponding to the manifestly
spin-rotationally invariant decoupling u‖

0 = u⊥
0 = 2u0/3. While this

minimum is also the global minimum for u0 = 1, 2 and 5, it is only a
local minimum for u0 = 0.5. In fact, for u0 = 0.5 the curve is almost
flat and has a global minimum at u‖

0/u⊥
0 = 0 and a local maximum

between the two minima.

In figure 14 we show our numerical results for Z as
a function of the dimensionless bare coupling u0. For
comparison, we also show the prediction of the ladder
approximation, as well as our FRG results with decoupling
only in the transverse spin channel, and numerically accurate
results obtained within Wilson’s numerical renormalization
group [16]. Our FRG calculation with simultaneous
decoupling in both transverse and longitudinal spin channels
obviously yields much better results for the suppression of Z
in the strong coupling regime than the single-channel FRG
discussed in section 3. In fact, on the scale of figure 14
our FRG results for Z seem to be reasonably close to the
exact numerical results, which in the strong coupling regime
can be approximated by the asymptotic formula (3.34). To
investigate whether our FRG approach reproduces the known
exponential suppression of Z , it is useful to present the
data in figure 14 by plotting 1/Z on a logarithmic scale, as
shown in figure 15. Note that on this scale the exponential

Figure 14. Wavefunction renormalization factor Z = liml→∞ Zl as a
function of the bare coupling u0 = U/(π�) obtained from the
numerical solution of equations (4.30)–(4.32). The two-channel FRG
results are for the manifestly spin-rotationally invariant choice of the
two Hubbard–Stratonovich decouplings where u‖

0 = u⊥
0 = 2u0/3.

For comparison, we have also shown NRG results from [16] (which
we have extrapolated to values u0 � 4.5).

Figure 15. Redrawing of figure 14: the inverse wavefunction
renormalization factor 1/Z is now plotted on a logarithmic scale.

suppression of Z at strong coupling corresponds to a straight
line. Obviously, for U � 15� our two-channel FRG
results begin to deviate significantly from the NRG results and
definitely do not reproduce the known exponential suppression
of the quasiparticle weight for U → ∞. On the other hand, the
two-channel FRG is accurate up to U ≈ 15�. We suspect that
the deviations from the NRG results for U � 15� are due to
our linearization of the spin susceptibility, which is expected to
lead to a suppression of the quasiparticle weight; see figure 4.

Finally, we show in figure 16 the spectral density of the
d electrons, which is defined by

A(ω) = − 1

π
Im G(ω + i0). (4.41)

For simplicity, we approximate G(ω + i0) by G�=0(iω →
ω + i0) and obtain

π�A(ω) = 1

1 + (
ω

Z�

)2
, (4.42)

with Z = liml→∞ Zl . The qualitative behavior of A(ω)

is in agreement with known results [1]: the width of
the central Kondo peak is proportional to the wavefunction
renormalization factor Z and its height at zero frequency is

12
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Figure 16. Low-energy behavior of the spectral density A(ω) of the
d electrons as defined in equation (4.42) for u0 = 0 (dashed line) and
1, 2, 4.

pinned to the value 1/(π�) in the particle–hole symmetric
case considered here, so the overall spectral weight of the low-
energy peak is of order Z . In fact, the pinning of the central
Kondo peak to the value 1/(π�) is a simple consequence of
the low-frequency Fermi liquid form of the flowing d electron
propagator (3.16). The spectral line-shape at energies larger
than � (including the broadened Hubbard bands at energy
scales ±U/2) cannot be described within our low-energy
truncation.

5. Summary and conclusions

In summary, we have proposed a functional renormalization
group approach to the Anderson impurity model which is based
on the mapping of the original fermionic problem onto a mixed
Bose–Fermi theory where the spin fluctuations are represented
by bosonic Hubbard–Stratonovich fields. Our approach can
be used to approximately calculate the spectral properties
including the quasiparticle weight up to couplings U � 15�.

This work also contains several technical advances which
will be useful for other FRG calculations. In particular,
we have shown that in FRG calculations for Fermi systems
using the technique of partial bosonization [17–19, 30–32], the
skeleton equations in the bosonic sector (which follow from
the Dyson–Schwinger equations) can be used to close the FRG
flow equations in the fermionic sector. Moreover, we have
shown how the ambiguities inherent in multi-field Hubbard–
Stratonovich decouplings can be resolved if one demands
minimal sensitivity with respect to small variations of a given
choice of decoupling. For a symmetric Anderson impurity
model, this naturally leads to the manifestly spin-rotationally
symmetric decoupling (4.3) at strong coupling. With our
decoupling scheme, this symmetry is also respected by the
truncated flow equations.

We have not been able to reproduce the exponential
dependence Z ∝ exp[−π2u0/8] of the wavefunction
renormalization factor for U → ∞. Although we have tried
several modifications of our approach, the strong fluctuations
responsible for an exponential suppression of Z for U → ∞
are apparently not correctly described within our truncation
of the exact FRG flow equations. In order to make progress
without using more elaborate numerical methods, we have

made approximations which are only accurate at low energies
|ω| � �. The first approximation is the linearization of the
polarization in the bosonic propagator (4.11). In addition,
we have also neglected the energy dependence of the three-
legged boson–fermion interaction. Another approximation is
the neglect of the four-legged boson–fermion vertex in our RG
scheme. This was done (i) because this vertex vanishes in
our initial mixed Bose–Fermi model and (ii) because it can
be shown by means of a power counting analysis that this
vertex is irrelevant in the RG sense and, therefore, becomes less
important in the low-energy limit. In fact, all approximations
made can be justified by means of a power counting analysis,
showing that the neglected contributions are irrelevant in the
RG sense. However, although it seems reasonable to neglect
these kinds of contributions in a first approximation as is done
here, these irrelevant couplings do have an effect, especially at
strong coupling.

Finally, we point out that a direct numerical solution
of our FRG flow equations should give rise to a better
agreement with NRG data at small couplings U . Therefore
one should numerically solve the coupled system of integro-
differential equations given by equations (3.12) and (3.13) or
equations (4.19)–(4.23), without approximating the fermionic
Green function on the right-hand side of these equations by
the Fermi liquid form (3.16). The fact that with our simple
approximations we get results which agree reasonably well
with NRG results gives us hope that solving this coupled
system of integro-differential equations could lead to better
results. Another direction of research which also deserves
further investigation consists of analyzing how different
truncation schemes of our exact Bose–Fermi hierarchy of RG
flow equations would affect our results. This study would be
clearly important in order to further improve our results for
the dependence on U of the Kondo scale which is an intrinsic
property of the Anderson impurity model.
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Janiš V and Augustinskỳ P 2008 Phys. Rev. B 77 85106

[15] Hedden R, Meden V, Pruschke T and Schönhammer K 2004
J. Phys.: Condens. Matter 16 5279

[16] Karrasch C, Hedden R, Peters R, Pruschke T,
Schönhammer K and Meden V 2008 J. Phys.: Condens.
Matter 20 345205
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[18] Schütz F and Kopietz P 2006 J. Phys. A: Math. Gen. 39 8205

[19] Kopietz P, Bartosch L and Schütz F 2009 Lectures on the
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